Our uncoated UV grade fused silica plano-convex lenses are designed to meet the demanding requirements of laser electro-optic focusing applications. These lenses are polished to tight tolerances using master test plates to ensure minimum wavefront distortion. Tight surface quality tolerances minimize scatter and unwanted diffraction effects.
Uncoated plano-convex lenses for focusing applications
UV Fused Silica Substrates for UV, Laserline & Broadband Applications
UV Grade Fused Silica is synthetic amorphous silicon dioxide of extremely high purity providing maximum transmission from 195 to 2100 nm. This non-crystalline, colorless silica glass combines a very low thermal expansion coefficient with good optical qualities, and excellent transmittance in the ultraviolet region. Transmission and homogeneity exceed those of crystalline quartz without the problems of orientation and temperature instability inherent in the crystalline form. It will not fluoresce under UV light and is resistant to radiation. For high-energy applications, the extreme purity of fused silica eliminates microscopic defect sites that could lead to laser damage. For more information, refer to our optical materials Technical Note
Precision Uncoated Plano-Convex Lens Surfaces
Our uncoated precision plano-convex lenses are polished to tight tolerances minimizing wavefront distortion. Tight surface quality tolerances minimize scatter and unwanted diffraction effects. Our standard lenses have a 20-10 scratch-dig surface quality, and a 1.5 λ surface power accuracy. For more information, refer to the optical surfaces technical note.
Advantages to Uncoated Lenses
Uncoated lenses are used in optical systems and devices because they have an exceptionally wide wavelength range, a high damage threshold ratio, and without the expense of coatings, are always less expensive than their coated counterparts. Further, uncoated lenses give camera images a “vintage” look, which is becoming popular in cinema film production.
Standardized Plano-Convex Focal Lengths
Standard effective focal lengths across a variety of newport lens sizes, materials and shapes provide a systematic approach allowing for lenses of different sizes to be interchanged without requiring other changes to your optical system. Collimating a point light source coming from the planar surface or focusing a collimated light source which is incident on the curved surface will help to minimize the spherical aberration.
Plano-Convex Lens Shape for Focusing Light
Plano-Convex lenses are the best choice for focusing parallel rays of light to a single point. They can be used to focus, collect and collimate light. The asymmetry of this lens shape minimizes spherical aberration in situations where the object and image are located at unequal distance from the lens. The optimum case is where the object is placed at infinity with parallel rays entering lens and the final image is a focused point.
Focusing a Collimated Laser Beam
For an application example, let’s look at the case of the output from a Newport R-31005 HeNe laser focused to a spot using a KPX043 Plano-Convex Lens. This Hene laser has a beam diameter of 0.63 mm and a divergence of 1.3 mrad. Note that these are beam diameter and full divergence, so in the notation of our figure, y1 = 0.315 mm and θ1 = 0.65 mrad. The KPX043 lens has a focal length of 25.4 mm. Thus, at the focused spot, we have a radius θ1f = 16.5 µm. So, the diameter of the spot will be 33 µm.
Collimating Light from a Point Source
Since a common application is the collimation of the output from an Optical Fiber, let’s use that for our numerical example. The Newport F-MBB fiber has a core diameter of 200 µm and a numerical aperture (NA) of 0.37. The radius y1 of our source is then 100 µm. NA is defined in terms of the half-angle accepted by the fiber, so θ1 = 0.37. If we again use the KPX043 , 25.4 mm focal length lens to collimate the output, we will have a beam with a radius of 9.4 mm and a half-angle divergence of 4 mrad.
We offer a full range of optical lens mounts to meet various experimental requirements. Below lists the recommended mounts for spherical lenses of standard sizes. Please see our Lens Mount Guide for additional information.
Note: besides the diameter, please check the Edge Thickness (Te) specification of the lens and the lens mount to ensure compatibility before purchasing.
In order to provide better service and products, please provide the following brief information.
Password Reset
Enter your email address below to reset your account password.
Password Reset
Email Verification Required
Cart Items Updated
Remove Product
Remove this product from your comparison list?
Check Order Status
Provide an order number and postal code to check the status of an order or download an invoice for an order that has shipped. Login to view your complete order history.
Sign In Required
To access this and other valuable technical resources, please sign in or register for a new online account.