The semiconductors discussed above are called intrinsic semiconductors. When impurity atoms known as dopants are added to intrinsic semiconductors, the doped materials are referred to as extrinsic semiconductors. The electrical and optical properties of extrinsic semiconductors can be significantly modified depending on the concentration of these dopants. Typically, the dopant atom is similar in size to the intrinsic semiconductor atom but has either one fewer or one greater electron in its valence shell. If the dopants have one greater electron, e.g., a dopant from group VI replacing a group V atom, the resulting material has a surplus of mobile electrons and is referred to as an n-type semiconductor. Conversely, doping with an atom having one fewer electron, e.g., a dopant from group II replacing a group III atom, results in an excess of holes and a p-type semiconductor is formed. n-type and p-type semiconductors are critical in the formation of the p-n junction (see below) which is the essential building block of an LED or laser diode.
The probability of a radiation process occurring is dependent on the population in the participating energy levels (See
Light-Matter Interactions in Lasers). Therefore, the efficiency of electron-hole recombination depends on the concentration of carriers (electrons and holes) in the valence and conduction bands. Determining these concentrations requires knowledge of the density of states and their occupation probability, which can be a complicated calculation involving the E-k diagram of the particular semiconductor, the operating temperature, and the doping level. However, qualitatively, the distribution of carriers mimics that of the Boltzmann distribution in that at nominal operating temperatures, the valence band is nearly filled with electrons while the conduction band will be mostly empty. Consequently, in order achieve a significant population of electron-hole pairs for recombination, a pumping mechanism must be present.
Increasing the number of electron-hole pairs in a semiconductor can be achieved through optical pumping as in other solid-state gain media. However, the most convenient pumping method is via electrical injection of charge carriers. This is accomplished by forming a p-n junction diode. When p-type and n-type semiconductor materials are placed in physical contact, the area around the contact (known as the junction) behaves differently than either of the two source materials. The excess electrons and holes diffuse from their respective materials into the adjacent material and recombination occurs. A region on both sides of the junction becomes devoid of free carriers and is known as the depletion region (see Figure 3). An electric field is created across the depletion region by the fixed charges that are left behind following this carrier diffusion. This built-in field, which points from the n-side to the p-side of the junction, prevents further diffusion. This p-n junction is in a state of equilibrium with no current flowing across the diode. However, if an external potential is applied to the junction, the flow of carriers will be affected. If the junction is forward biased such that a positive potential is applied to the p-region, an electric field is produced that opposes the built-in field. Holes from the p-region are injected into the n-region while electrons are injected from the n-region to the p-region. These injected minority carriers recombine with the majority carriers in the destination region (see Figure 3). In effect, radiative recombination is achieved by electrically injecting charge carriers in the junction region. The junction can also be reverse biased, as shown in Figure 3, which is important in the operation of photodiodes.
A homojunction is a p-n junction where both p-type and n-type regions are made of the same material. The first laser diode devices employed homojunctions but were inefficient. This was due to a relatively thick active region (i.e., ~ 1 µm) which is the region of the junction where radiative recombination occurs. The gain coefficient for a laser diode is proportional to the current density injected into the junction. Therefore, reducing the thickness of the active region would allow a smaller volume to be pumped and allow comparable gain with a lower injected current density. Double heterostructure (DH) designs, where the active medium is sandwiched between p and n materials which are different from the active material, allow for reduction of the active region down to thicknesses of 0.1 µm. Threshold current densities can be reduced by nearly two orders of magnitude compared to homojunctions and have largely superseded homojunctions in designs for LEDs and laser diodes. DH devices achieve this thickness reduction by utilizing a narrower bandgap material for the active medium compared to the sandwiched materials. This provides energy barriers at the two junctions and forces injected electrons and holes to occupy a narrow active region. In addition to this carrier confinement, light confinement can also be achieved if the refractive index of the active layer is larger than the cladding layers. The layer acts as an optical waveguide, ensuring that photons are confined to the region where the gain exists.