Numeric aperture is a more valuable concept for optical systems with high cone angles.
Concave spherical mirrors are also used to collect and focus light. We use them for our Fiber Illuminators. The focal length of a lens can vary with wavelength due to chromatic aberration, while mirror systems are truly wideband in application. The concepts of F/# and numerical aperture also apply to mirrors. When elliptical reflectors are used, as in our PhotoMax™ Lamp Housings, F/# is used to describe the ratio of the reflector aperture to the distance between that aperture and the focus outside the ellipse.
We use square and rectangular mirrors in some of our products. The F-number (F/#) we quote is based on the diameter of the circle with area equal to that of the mirror. This F/# is more meaningful than that based on the diagonal, when light collection efficiency is being considered.
Since light collection varies as 1/(F/#)2, decreasing F/# is a simple way to maximize light collection. However, note, there is a difference between total radiant flux collected and useful radiant flux collected. Low F/# lenses collect more flux, but the lens aberrations determine the quality of the collimated output. These aberrations go up rapidly with decreasing F/#. Though more light is collected by a very low F/# lens, the beam produced is imperfect. Even for a point source it will include rays at various angles, far from the collimated ideal. No optical system can focus a poor quality beam to a good image of the source. So, while a low F/# singlet lens (≤F/4) may be an efficient collector, you will get such a poor output beam that you cannot refocus it efficiently. Our Aspherabs™ address this problem, and we use doublet lenses to reduce aberration in our F/1 condensers. In applications where image quality or spot size is important, a higher F/# condenser may give better results.
It is important to understand this fundamental concept, for though it is relatively easy to collect light, the quality of the beam produced and your application determine whether you can use the light collected. Our PhotoMax™ Systems are efficient collectors, but the output beams have their own limitations.
When focusing a beam with a lens, the smaller the F-number, the smaller the focused spot from a collimated input beam, which fills the lens. (Aberrations cause some significant exceptions to this simple rule.)
The practical limit of F/# for singlet Spherical Lenses depends on the application. For high performance imaging, the limit is about F/4. F/2 - F/1.5 is acceptable for use as a condenser with arc lamps. The lens must be properly shaped and the correct side turned towards the source (our F/1.5 plano convex condensers have much poorer aberration performance if reversed).
The number of elements must increase for adequate performance at lower F/#. F/1 camera lenses have five or six components. Our F/0.7 Aspherabs® use four. Microscope Objective Lenses approach the limit of F/0.5 with ten or more elements, and they have good performance only over very small fields.
Here are some of the major considerations in selecting and using a condenser:
The material of any condensing lens has a limited range of spectral transmittance. Sometimes these limits are useful, for example in blocking hazardous ultraviolet (UV). Another example when working in the IR, is the use of a germanium lens with a VIS-IR source such as a QTH lamp. The lens acts as a long pass filter and absorbs the visible.
The ultraviolet transmittance of condensers and other optical elements is important when trying to conserve the limited ultraviolet components from our sources. The ultraviolet transmittance of *“quartz” or “fused silica” is very dependent on the origin of the material and on the cumulative exposure to short wavelength radiation (solarization). Our condensers are made from selected UV grade synthetic silica for the best ultraviolet transmittance.
*Quartz is the original natural crystalline material. Clear fused silica is a more precise description for synthetically generated optical material.
Although refractive index, and therefore focal length, depend on temperature, the most serious thermal problem in high power sources is lens breakage. The innermost lens of a low F/# condenser is very close to the radiating source. This lens absorbs infrared and ultraviolet. The resultant thermal stress and thermal shock on start-up, can fracture the lens. Our high power Lamp Housings with F/0.7 condensers use specially mounted elements close to the source. The elements are cooled by the Lamp Housing fan, and the element closest to the source is always made of fused silica. Even a thermal borosilicate crown element used in this position fractures quickly when collecting radiation from a 1000 or 1600 W lamp.
All real sources have finite extent. Figure 2 exaggerates some of the geometry in collecting and imaging a source. Typical sources have dimensions of a few mm. Our 1 kW Quartz Tungsten Halogen Lamp has a cylindrical filament of 6 mm diameter by 16 mm long. With the filament at the focus of an ideal 50 mm focal length condenser, the “collimated beam” in this worst case includes rays with angles from 0 to ∼9° (160 mrad) to the optical axis. Most lenses have simple spherical surfaces; focusing a highly collimated beam with such a spherical optic also has limitations.